

Course Title: Quantum Mechanics I

Course Code: 352PHYS

Program: Physics

Department: Physics

College: Science

Institution: Jazan University

Version: V2022

Last Revision Date: 30/12/2022

Table of Contents:

Content	Page
A. General Information about the course	
Teaching mode Contact Hours	
B. Course Learning Outcomes, Teaching Strategies and Assessment Methods	
C. Course Content	
D. Student Assessment Activities	
E. Learning Resources and Facilities	
1. References and Learning Resources	
2. Required Facilities and Equipment	
F. Assessment of Course Quality	
G. Specification Approval Data	

A. General information about the course:

Со	Course Identification				
1.	Credit hours:	3			
2. (Course type				
a	University □	College □	Department⊠	Track□	Others□
b	Required ⊠	Elective□			
3. Level/year at which this course is					

offered: Level 9/ Year 3

4. Course general Description

This course covers fundamental concepts of quantum mechanics: wave properties, uncertainty principles, Schrödinger equation, and operator and matrix methods. Basic applications of the following are discussed: one-dimensional potentials (harmonic oscillator), three-dimensional central potentials (hydrogen atom), and angular momentum and spin.

5. Pre-requirements for this course (if any): 252 PHYS

6. Co- requirements for this course (if any):

7. Course Main Objective(s)

- The course is designed to provide students with justification of the failure of classical physics to explain many phenomena.
- An introduction to the conceptual and mathematical foundations of quantum mechanics.
- Analytical methods commonly used in quantum mechanics.
- The foundations for further studies in fields of atomic and nuclear spectroscopy, elementary particle physics and solid-state physics as well as more advanced quantum mechanics.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	33	100%
2.	E-learning		
	Hybrid		
3.	Traditional classroom		
	E-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	3
5.	Others (specify)	
	Total	33

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Describe the kinds of experimental results which are incompatible with classical physics, and which require the development of a quantum theory of matter and light.	PLO 1.2	Lectures, discussion comparisons	Direct (Formative and summative): In class interactive questioning, quizzes, written exams. Indirect: student survey
1.2	Write the general time Schrödinger equation within different potentials and different coordinates, Hilbert space and Hermitian operators and their vital use in quantum mechanics	PLO 1.1	Lectures, discussion	Direct (formative and summative): In class interactive questioning, quizzes, written exams. Indirect: student survey
2.0	Skills			
2.1	Apply the basic postulates of quantum mechanics, the role	PLO2.1	Lectures, discussion	Direct (formative and summative): In

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	of uncertainty in quantum physics to a particle's physical properties such as position, momentum and energy, and use the commutation relations of operators to determine whether or not two physical properties can be simultaneously measured			class interactive questioning, quizzes, written exams. Indirect: student survey
2.2	Analyze the Schrödinger equation in one dimension within different experimental phenomena (potentials)	PLO2.2	Lectures, discussion, Tutorial	Direct (formative and summative): In class interactive questioning, quizzes, written exams. Indirect: student survey
2.3	Formulate the Schrödinger equation in three dimensions using spherical coordinates	PLO2.2	Lectures, Discussion, Tutorial	Direct (formative and summative): In class interactive questioning, quizzes, written exams Indirect: student survey
2.4	Derive analytical results for spherically symmetric potentials (Hydrogen atom)	PLO2.2	Lectures, Discussion, Tutorial	Direct (formative and summative): In class interactive questioning, quizzes, written exams. Indirect: student survey
2.5	Develop communication and critical thinking competencies during interactive discussion, group assignments, essays or web-based activities	PLO2.4		
3.0	Values, autonomy, and respons	sibility		
3.1	Develop skills of working in groups in group assignments and discussion and bear	PLO 3.1	Discussion, question and answer	Direct In class interactive questioning, quizzes, written

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	individual responsibility in the assigned tasks			exams. Indirect: student survey
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	 1- The Wave Function The Schrodinger Equation The Statistical Interpretation Probability Normalization Momentum The Uncertainty Principle 	6
2.	 2- The time-independent Schrodinger equation. Stationary States The Infinite Square Well The Harmonic Oscillator The Free Particle The Delta-Function Potential The Finite Square Well 	10.5
3	 3- Formalism (Mathematics of Quantum Mechanics) Linear Algebra The Uncertainty Principle, 	4.5
4	 4- Quantum Mechanics in 3D Schrodinger Equations in Spherical Coordinates The Hydrogen Atom Angular Momentum Spin 	12
	Total	33

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
----	-------------------------	--------------------------------------	---

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Assignment 1	2	5 (5%)
2.	Assignment 2	6	5 (5%)
3.	Quiz I	4	5 (5 %)
4.	Mid-term exam	7	20 (20%)
5.	Assignment 3	9	5 (5%)
6.	Assignment 4	11	5 (5%)
7.	Quiz II	10	5 (5%)
8.	Final Exam	12	50 (50%)

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Introduction to Quantum Mechanics; David J. Griffiths, CAMBRIDGE UNIVERSITY PRESS, 2017.
Supportive References	 Introductory Quantum Mechanics; R. Liboff, 4th Edition, Addison-Wesley, 2002. Quantum Mechanics; Sara M. Mc Murry, Addison-Wesley, 1994
Electronic Materials	 <u>e-Learning</u> in the School of <u>Physics</u> and <u>Astronomy</u> (www.ph.ed.ac.uk/elearning) <u>Physical Sciences Resource Center</u> (PSRC) (www.psrc-online.org) The Physics Homepage (www.physics.ox.ac.uk)
Other Learning Materials	 Mathematical packages: <i>Mathematica</i>, Math Lab, and Maple. Software: Virtual Physics

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classroom
Technology equipment (projector, smart board, software)	Smart board
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Peer and program leader	Indirect (CES)- Indirect peer evaluation
Effectiveness of students assessment	Students, Program assessment committee	Direct/ Indirect
Quality of learning resources	Students, Faculty members	Indirect
The extent to which CLOs have been achieved	Instructor	Direct/Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	DEPARTMENT BOARD
REFERENCE NO.	PHYS2304
DATE	28/02/2023

Approved by:

Head of Physics Department

Dr. Hussain Alathlawi

